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Climate Policy Under Fat-Tailed Risk: An Application of Dice

1. Introduction

Everything about climate change is uncertain. Although this has been acknowledged for a
long time, a recent paper by Weitzman (2009a) emphasized the importance of
conceptualizing climate policy as risk management. Weitzman (2009a) formalizes an earlier
suspicion by Tol (2003): there is good reason to believe that the uncertainty about the
impacts of climate change is fat-tailed.' That is, the variance or even the mean of the
distribution of the objective value (welfare) may not exist. This violates the axioms of
decision making under uncertainty.

Unfortunately, Weitzman (2009a) and Tol (2003) diagnose the problem but do not offer a
solution. Anthoff and Tol (2010) propose alternative decision making criteria. In this paper,
we follow a different track: we keep the standard decision making criterion of utility
maximization but investigate how the uncertainty around key parameters of the climate
change affects the optimal decision of economic agents. This is a worthwhile course of
action because Weitzman (2009a) and Tol (2003) only consider scenarios without climate
policy. It may be that greenhouse gas emission reduction thins the tail.

Considering the impacts of climate change but ignoring the impacts of greenhouse gases
(GHG) emission reduction, Weitzman’s characterization of climate policy is incomplete. As
shown by Hennlock (2009), this materially affects the results. Intuitively, the reasoning is
something as follows. Weitzman (2009a) argues that the certainty-equivalent of the
marginal damage cost of carbon dioxide emissions is arbitrarily (or infinitely) large. Taken at
face value, this implies that an arbitrarily large carbon tax should be imposed — or that
emissions should be driven to zero immediately. That is a silly implication. It is currently
impossible to grow sufficient amounts of food to feed the world population and transport
crops from the fields to the population centres without fossil fuels. It may well be possible to
do without fossil fuels in 50 years time, but imposing a carbon-neutral economy in 50 days
time would lead to widespread starvation. In the short term (but not in the long term), fossil
fuels are a necessary input. Put differently, the costs of ultra-rapid abatement are arbitrarily
large as well, with the difference that they are known with more certainty than the impact
of climate change. The theoretical argument of Weitzman could thus be reversed in case of
very high costs of ultra-rapid abatement since the expectation of the damages of a rapid
emission reduction policy may be infinite. This raises the question of how policy makers
should weight two extreme (or infinite) costs in their decision making. In many aspects, this
is more a philosophical than an economic question since infinity is not economically
quantifiable.

! There is no consensus on the exact definition of the term ‘fat (or heavy) tail’ (Nordhaus, 2009). However, most
climate change economists currently use the term proposed by Weitzman (e.g., Newbold and Diagneault, 2009;
Dietz, 2010; Pindyck, 2010): “a PDF has a fat tail when its moment generating function is infinite - that is, the tail
probability approaches 0 more slowly than exponentially” (Weitzman, 2009: 2). We also follow this definition in
this paper.



Therefore, the economically optimal climate policy under uncertainty, whether fat-tailed or
not, requires a balancing of the impacts of climate change and the costs of emission
reduction. In this paper, we analyze Weitzman’s Dismal Theorem in an economic decision
framework. We use a well established numerical Integrated Assessment Model (IAM),
namely the DICE model. While less general, our approach is more flexible, more realistic, and
more accessible. As uncertainty is bounded by definition in a numerical framework, we
introduce a method for analyzing fat-tails using thin-tailed distributions.

As far as the uncertainty about climate change is concerned, simplified analytical models
(e.g., Ulph and Ulph, 1997; Ulph and Maddison, 1997; Gollier et al., 2000; Fisher and Narain,
2003; Baker, 2005; Ingham et al., 2007) or numerical models such as IAMs (e.g., Manne and
Richels, 1992, Peck and Teisberg, 1993, 1995; Kolstad, 1996; Nordhaus and Popp, 1997; Ulph
and Maddison, 1997; Gjerde et al., 1999; Kelly and Kolstad, 1999; Pizer, 1999; Tol, 1999;
Webster, 2002; Baranzini et al.,, 2003; Keller et al., 2004; Yohe et al.,, 2004; Albertth and
Hope, 2007; Leach, 2007; Mclnerney and Keller, 2007; Bosetti et al., 2009) based on cost
benefit analysis (CBA) have been mainly used since the early 1990s. Fat-tailed uncertainty,
however, is not considered in those models.

Meanwhile, CBA based on expected utility (EU) theory have been criticized for failing to
account for structural (or deep) uncertainty (Tol, 2003; Weitzman, 2009a). As a response to
this criticism, on the one hand, alternative approaches such as the ambiguity aversion
framework (e.g., Lang and Treich, 2008) and the minimax-regret criterion (e.g., Anthoff and
Tol, 2010) have been tried. On the other hand, within the framework of EU, there have been
applications of IAMs introducing the fat-tailed uncertainty about key parameters (e.g.,
Roughgarden and Schneider, 1999; Mastrandrea and Schneider, 2004; Newbold and
Daigneault, 2009; Ackerman et al., 2010; Dietz, 2010; lkefuji et al., 2010). However, these
studies differ from ours because they do not directly investigate how the optimal climate
policy responds to uncertainty. Instead they generate samples of draws of key parameters
assuming a fat-tailed distribution or stochasticity and then perform a deterministic
simulation of their model for each value of the parameters. Such an experiment is more a
wide sensitivity analysis than a real definition of the optimal choice under uncertainty. They
give the optimal choice for each possible value of the parameters but do not say what would
actually be the optimal decision given this uncertainty. That is, they compute the
expectation of maximum welfare rather than maximize expected welfare. Moreover, they do
not investigate the impact of alternative levels of uncertainty, and therefore do not gain
insight into the effect of increasing uncertainty on climate policy.

In contrast, we focus on the optimal choice given uncertainty by assuming that the agent
chooses the optimal abatement speed that maximizes the expected utility. We also
investigate how the optimal choice is affected if the uncertainty on the climate sensitivity
increases. Hennlock (2009) does this analytically. Instead we use a simulation model by
assuming a fat-tailed distribution of the risk. We run different simulations of DICE for
increasing value of the variance. In other words, we increase the tail of the distribution and
look at the evolution of the optimal choice in order to answer the following questions. How
does the optimal carbon-tax behave when the uncertainty about climate change varies?



Does it have an upper bound or not? Do we get the Weitzman effect where the optimal tax
increases to an arbitrarily high number if the variance grows? Is the link between the
optimal tax and uncertainty sensitive to the specification of the damage function, the
abatement-costs function or of the utility function? For simplicity we ignore learning effects -
the fact that at least a part of uncertainty may vanish over time -which would highly
complicate the resolution of the maximization program.

The paper proceeds as follows. Section 0 presents the model and the scenarios. Section 0
discusses the results for the case in which the climate sensitivity is the only uncertain
parameter. Section 0 shows seven sensitivity analyses: [1] an alternative parameterization of
the uncertainty about the climate sensitivity; [2] an alternative method of increasing
uncertainty; [3] the shape of the damage function; [4] the uncertainty about both the
climate sensitivity and the impact of climate change; [5] the uncertainty about both the
climate sensitivity and the cost of GHG emission reduction; [6] an alternative utility function
accounting for nonmarket (ecological) goods, and [7] an alternative coefficient of constant
relative risk aversion. Section 0 concludes.

2. The model

As detailed in Appendix A, we amend the DICE model using the notion of ‘state of the world’
in order to introduce uncertainty into the model (Manne and Richels, 1992). Although
almost all parameters in an economic model on climate change are more or less uncertain,
we introduce uncertainty only about climate sensitivity for mainly three reasons. First, this
parameter plays a significant role in the results of IAMs. Second, its uncertainty has been
relatively well investigated (Solomon et al., 2007) where very little is known about the
uncertainty surrounding most other parameters. Third, the limits of the GAMS language do
not allow for including simultaneously all uncertainties in IAMs.

We denote a set of possible values of climate sensitivity by SW and an individual state by s.
We assume that SW is finite and the lower and the upper bound of climate sensitivity is 0°C
and 25°C, respectively.” The number of states of the world is set at 1,000, and thus climate
sensitivity in each state of the world increases by 0.025°C in our model.> This paper also
recalibrates the speed of adjustment in the atmospheric temperature equation of the DICE
model so that the modeled temperature-increases from pre-industrial to present times is in
line with the observed warming. This procedure also circumvents the infeasibility, which has
been reported in applications of DICE when the value of climate sensitivity is lower than

2 We find that the main implications of this paper are hardly affected by increasing the upper bound of climate
sensitivity, even up to 500°C/2x[CO,]. The computational limit prevents from increasing the upper bound further
without violating the 1% threshold of maximum loss of information we allow in this paper (see the explanation in
Section 0).

% Our model is solved with a nonlinear programming algorithm named CONOPT (version 3.14S) in the GAMS
modeling system. The model involves 391,451 endogenous variables for a single-uncertainty run and it is not
possible to enlarge the number of states over 1,000 using the Core 2 Duo (3.0 GHz, 2.99 GHz) Intel Processor with
3.46 GB of RAM.



about 0.5°C (e.g., Ackerman et al., 2010). See Appendix B for the method of calibration in
detail.

The objective function of our model including the uncertainty about climate sensitivity is as

follows.

S
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where W denotes expected net present social welfare, S denotes the total number of states
of the world s, T denotes the total number of time periods t, p(s) is the probability of each
state of the world, U(c(t, s),L(t)) is the utility function, c(t, s) is the flow of consumption
per capita at time t and state s, L(t) is the level of labor force at time t, and R(t) is the
discount factor.

Attaching subscript s into the relevant variables, we associate of each state s with the utility
of per capita consumption. Then, solving Equation (1) we analyze the impacts of the
uncertainty about climate sensitivity on the discounted sum of expected utility of per capita
consumption or social welfare.*

We need to specify the probability of each state of the world in order to solve the objective
function. To this end, we use the probability density function (PDF) of climate sensitivity
derived from the framework of feedback analysis.” In this framework, the probability
distribution of climate sensitivity can be drawn from the probability distribution of feedback
factors. The term ‘feedback factors’ refers to the impacts of physical factors such as water
vapor, cloud, albedo etc. to radiative forcing in a way of amplifying the response of climate
system (Hansen et al., 1984). The total feedback factors has the following relationship with
the equilibrium climate sensitivity (Roe and Baker, 2007).

€S =CSo/(1~ f)
(2)

where f denotes the total feedback factors, CS denotes the equilibrium climate sensitivity,
and CS, =1.2°C denotes the climate sensitivity in a reference system (without any feedback
factors like a blackbody planet).

Assuming that feedback factors has a normal distribution with mean f and standard
deviation o as usually assumed in general circulation models (GCMs) and that climate

sensitivity is related to feedback factors according to Equation (2)

, the probability density of climate sensitivity is given as follows (Roe and Baker, 2007).

4 This is assured by the ‘substitution rule’ in probability theory. If climate sensitivity CS; € SW takes on a value of
probability p; utility U, by a series of mapping from CS; to temperature increases, to damage costs, to
consumption, etc., also has the same probability p;.

> For more detailed discussion on the framework of feedback analysis, see Roe (2009) and the references therein.
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Figure 1 depicts the probability distributions of climate sensitivity with different values of ay.
(f:0.65 and CS,=1.2°C remain unchanged). Climate sensitivity is asymmetrically distributed
(left-skewed) and oy strongly affects the distribution, especially the tails: the higher oy, the
fatter the tails.® Climate sensitivity below a certain value, say 1.5°C, has a negligible density.
This is because, by Equation (2)

, climate sensitivity cannot take on values less than CS, unless we let negative feedback
(f<0), which is neither interesting in terms of global warming nor physically relevant (Roe,
2009).
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Figure 1. Climate sensitivity distributions from the framework of feedback analysis. c_f denotes the standard
deviation of feedback factors (€Sy=1.2°C, £=0.65). Note that the graph is truncated and thus does not show the
densities of climate sensitivity > 10°C.

The probability of each state of the world p(s) in the objective function is derived from the
following formula: p(s) = f(CS) X ACS, where f(CS) is the probability density calculated
from Equation (2)

and ACS is the interval of each climate sensitivity. This provides a discrete approximation of
the continuous density function since the probability of a random variable, for small
intervals, is nearly equal to the probability density times the length of the interval. This
approximation, unless the interval is extremely small, causes an unfortunate loss of
information. Thus this paper considers the results which have no more loss of information
than 1%: the ‘1% criterion’ for later reference. More precisely, the cumulative probability
across the whole range of climate sensitivity should not be lower than 0.990. This 1%
threshold is arbitrary but small enough to maintain a good approximation of the underlying

® The mean of feedback factors f also affects the climate sensitivity distribution, but this paper deals only with o
because f plays the similar role in increasing variance to a;.

7 Note that the total feedback factors is assumed to be in the range of 0<f<1in typical GCMs. If f<0, the system
response is damped (or not amplified) by inclusion of feedback factors. If f>1, an equilibrium state cannot be
established (Roe, 2009).



uncertainty. Finally, in order to make the cumulative probability 100% in simulations, we use
p(s)/ X p(s) as the probability of each state of the world.

We increase the uncertainty about climate sensitivity by stepwise increments of the
standard deviation of feedback factors oy in Equation (3). This increases the variance of
climate sensitivity which is a measure of the spread of the possible values of climate
sensitivity. This method is frequently used in statistical applications, but it has a
disadvantage in that it may not preserve the mean if the probability distribution of an
uncertain variable is asymmetric. In our analysis, for instance, even if we assume that the
total feedback factors f is normally distributed and fix the mean of feedback factors as a
constant, the nonlinear relationship between feedback factors and climate sensitivity,
specified by Equation (2)

, leads to the highly skewed distribution of climate sensitivity. In this case the mean alters
while the variance increases.

The so-called mean-preserving spread (MPS) (Rothschild and Stiglitz, 1970) may be an
alternative since it fattens tails without changing the mean. The MPS, however, has
problems adapting to our model. In coherence with the climate model retained in Roe and
Baker (2007) where the uncertainty is not directly about the climate sensitivity but about the
value of the feedback factors, it seems logical to preserve the mean of feedback factors
instead of the mean of climate sensitivity.

Moreover, the MPS approach raises intractable technical difficulties. First of all, in case of
fat-tailed distributions, which we focus on, it is not possible to apply the method because
fat-tailed distributions, by definition, do not have moment generating functions. In other
words, there is no mean to preserve in fat-tailed distributions. Secondly, even in bounded
distributions where we can calculate the mean and the standard deviation from the
simulated PDF, it is not easy to apply the MPS procedure since there is no established way of
doing it. One may think of an iterative way of taking densities from the centre and
transferring them into the tails (Mas-Corell et al., 1995: ch.6), but this method produces
several discontinuous jumps on probability distributions, which is scientifically irrelevant.
Furthermore, the fact that we are not able to let the upper bound of climate sensitivity
approach infinity in numerical models restricts the usage of the MPS. The process of
variance-increasing allots an additional density to both tails of the distribution (see Figure 1).
The probability additionally attached to the left tail dominates the one attached to the right
tail in a bounded distribution. This is because the effect of ‘shift of density to the left tail’
would not be compensated for the effect of the ‘shift of density to the extreme right tail’: in
a bounded model, the latter effect is rarely big enough. Unfortunately, the MPS procedure
amplifies this imbalance by shifting more density to the left tail during the process of
variance-increasing (See Figure 1).

For these reasons, and although the method of increasing variance raises some issues, we
use it as the basic method of increasing uncertainty. In the application below, the mean



increases with the variance so that we may overstate the effect of increasing uncertainty —
in the context of our research, our basic method is therefore conservative. As a sensitivity
analysis, however, we apply the MPS method in order to investigate how our main results
are affected by the method of increasing uncertainty.

Increasing uncertainty affects the optimal level of emission reduction. Indeed, Weitzman
(2009a) argues that climate policy should be arbitrarily ambitious if the tails of the
uncertainty about welfare are fat. We use the carbon tax as our measure of the intensity of
climate policy.®

In a numerical model with a finite number of states of the world, tails are necessarily thin in
the sense that all empirical moments exist and are finite. Therefore, we devise an alternative
way of analyzing the impacts of uncertainty on policy instead. We increase the variance of
climate sensitivity in the truncated fat-tailed distribution, and then plot the resulting optimal
carbon tax against the variance. If the optimal carbon tax increases and its curvature is
convex (for instance, like that of an exponential function), we can deduce that the carbon
tax become arbitrarily large when the uncertainty about climate change goes to infinity. This
can be translated into the argument that we should put our utmost efforts to reduce carbon
emissions at the present time. By contrast, if the carbon tax function of uncertainty is
increasing and concave, that is, it has a diminishing rate of growth in carbon tax, we can
postulate that there may be an upper bound on carbon tax even if uncertainty increases
unboundedly.

2. Results

We gradually increase the standard deviation of feedback factors a5 and then calculate the
variance of climate sensitivity from the simulated PDF. The calculated mean and variance of
climate sensitivity are listed in Table 1. The cumulative probability across the whole range of
climate sensitivity is not equal to 1, especially when g becomes greater than 0.11, because
we use discrete programming and a truncated distribution. With the 1% criterion, o cannot
be higher than 0.13 in this simulation. The mean of climate sensitivity increases from 3.43 to
4.06 while the variance of climate sensitivity increases from 0.01 to 5.51.

Table 1 Simulated mean and variance of climate sensitivity

O'f 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

Mmeg 3.43 3.44 3.45 3.48 3.50 3.54 3.59 3.65 3.72 3.80 3.89 3.98 4.06

UCZS 0.01 0.04 0.09 0.17 0.29 0.46 0.71 111 1.69 2.47 341 4.45 5.51

P (CS < Csup) 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 0.994 | 0.990

8 The carbon tax is a diagnostic variable in the DICE model. It is indirectly calculated as the Pigou tax by the
following equation: carbon tax = —(dW /0E,)/(0W /dK,), where E; and K, denote carbon emissions and the
capital stock at time t, respectively.




Note: o denotes the standard deviation of feedback factors, m; and 02 denote the mean and the variance of
climate sensitivity, respectively, P(cs < CSup) is the cumulative probability across the range of climate
sensitivity (0°C, 25°C]. Throughout all simulations the mean of feedback factors remains fixed at 0.65.

Figure 2 illustrates the relationship between the optimal carbon tax and the variance of
climate sensitivity. We only present the initial carbon tax (in 2005) because it represents the
optimal choice of current generations. In addition, the selection of a specific time-period
does not affect the nature of our results. Selecting another time period gives a higher tax
level but a similar evolution of the tax as the one presented in Figure 2. The first thing we
can observe in Figure 2 is that the optimal carbon tax increases when the uncertainty about
climate sensitivity increases. This can be interpreted as follows: the risk-averse social
planner would be willing to make more efforts to reverse the adverse impacts of climate
change if the uncertainty increases. Secondly and more importantly, we can notice that the
carbon-tax function is concave in uncertainty. This feature holds even when the variance of
climate sensitivity goes up to 589.° Figure 2 does not show the behavior we would expect
from the dismal theorem of Weitzman (2009a). Rather it implies that the optimal carbon tax
may be upper bounded when uncertainty increases.

In order to examine the robustness of our findings, we also run our model with alternative
assumptions in the next section: different probability distribution, different method of
increasing uncertainty, different parameterization of damage function and abatement-costs
function, different form of utility function, and different level of risk aversion.

335 4

Initial carbon tax (2005US$\tC)
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Variance of climate sensitivity
Figure 2 Carbon tax against uncertainty about climate sensitivity. All results within the 1% criterion are shown in
this graph. Note that the initial carbon tax in deterministic run ($28.6/tC, when d s =0), is not depicted in the
graph and thus the first dot in the left-bottom of the figure represents the case when o =0.01.

4. Sensitivity analysis

? When the upper bound of climate sensitivity is set to 500, the variance of climate sensitivity can be increased
up to 589 within our 1% criterion.



We assume that climate sensitivity has the lognormal distribution given by Equation (4) with
parameters 1 = 1.071 and ¢ = 0.527 as in Ackerman et al. (2010)."

2

1 1[(n (CS) — u)]

CS) = expyi—=|———— (4)
F(CS) = —— p{ 2[ -
We increase o from 0.05 to 0.90 and then calculate the variance of climate sensitivity from
the simulated PDF. The reason that we stop increasing o at 0.90 is the same as in the
previous section: the 1% criterion. Other assumptions including the number of states of the
world, the range of climate sensitivity, the equations of the model remain the same as in the

previous section.

The PDFs of climate sensitivity following Equation (4) are depicted in Figure 3. The tails
become fatter as the parameter o gets higher. One of the main differences between the
lognormal distribution and the Roe-Baker distribution is that the lognormal distribution
allows low climate sensitivity (say, below 1.5°C) to have non-negligible densities. There is
also a loss of information when o becomes higher, but in this case the loss is mainly at the
lower end of climate sensitivity. This implies that there is a limit to the variance of climate

sensitivity.
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Figure 3 Lognormal distribution of climate sensitivity. o denotes the standard deviation of the logarithm of
climate sensitivity, mps denotes a probability density function drawn from the method of mean-preserving
spread. The mean of the logarithm of climate sensitivity is set to 1.071°C for all distributions. Note that the graph
is truncated and thus does not show the densities of climate sensitivity higher than 10°C.

Figure 4 gives the relationship between the optimal carbon tax and the variance of climate
sensitivity. For low variances, the optimal carbon tax decrease in the variance. This is
explained by the fact that we use a truncated probability distribution. As we can see from
Figure 3, increasing the variance fattens the tails both right and left. If the variance of the

19 They calibrated the parameter values to the probability-estimates in Weitzman (2009a) and Solomon et al.
(2007).
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climate sensitivity is low (high) — below (above) 0.58 in our parameterization — the fattening
of the left (right) tail dominates and the carbon tax falls (rises) as the variances increases.
For substantial uncertainty about the climate sensitivity, the optimal carbon tax increases
but its rate of growth diminishes as the variance of climate sensitivity becomes higher.

29.0 A

28.5 A

28.0 A

275 A

Initial carbon tax (2005US$\tC)

27.0 = T T )
0 5 10 15

Variance of climate sensitivity

Figure 4 Carbon tax against uncertainty about climate sensitivity: calculated from the lognormal distribution.

We also run our model with a MPS procedure. Since the mean, mode and variance of the
lognormal distribution are calculated as Equation (5), we can preserve the mean (mode)
while we increase the variance by adjusting the parameter values pand .

E[CS] = exp(u + 02/2) (5)
M[CS] = exp(u — 62) (6)
var[CS] = exp(2u + 62) x (exp(c?) — 1) (7)

Using the same specification as in Figure 4, the optimal carbon tax decreases as the variance
increases with the MPS procedure. See Figure 5. This is because the mode of the climate
sensitivity falls as the variance increases. If we run the model with the mode-preserving
spread, the optimal carbon tax increases and its rate of growth decreases as the variance of
climate sensitivity increases.

11



32 4 Mean-preserving spread_left axis - 36

o~~~
Q
=
B 30 - )
=
S
(=3
Q 28 - - 28
»
8
S 26 - - 24
=
=
>
= 24 - 20
<
=
=
2 : . 16
0 5 10 15

Variance of climate sensitivity

Figure 5 Carbon tax against uncertainty about climate sensitivity: according to the methods of mean-preserving
spread and mode-preserving spread.

The shape of the damage function is obviously important to the results. If large warming
would have more severe impacts on damages, the effect of a fatter right tail of the climate
sensitivity would be larger. Thus we replace the damage function in DICE with the functional
form and the parameter values from Weitzman (2010):

2(t,8) = 1/[1 + 11 Tar(t,s) + mTar (8, $)* + w3 Tyr (t, )™ ] (8)

where 2(t,s) denotes the impacts of temperature-increases on damage costs (1-2(t, s) is
the damage costs as a fraction of gross world output), T4r (£, s) is the global mean surface air
temperature increases from 1900, m;=0, 7,=0.0028388, m3= 0.0000050703, m,=6.754 are
parameters. The original damage function in the DICE model obtains for m3=0 and m,=0.

Introducing the polynomial term hardly affects the damage ratio at low temperature
increases, but the ratio greatly increases from the warming of 3°C or more as in Figure 6.
Thus the damage function becomes more reactive to high temperature increases than the
original DICE model.

12
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Figure 6 Damage costs against atmospheric temperature-increases.

Figure 7 shows the results of the MPS procedure. Whereas the optimal carbon tax decreases
in the variance of the climate sensitivity with the original, quadratic damage function, the
carbon tax increases in uncertainty for the more non-linear function of Weitzman (2010).
Strikingly, although the carbon tax is concave in the uncertainty of climate sensitivity, it is
barely so. When the upper bound of climate sensitivity is 252C, the concavity is hardly visible
(green line in Figure 7) but it becomes visually detectable when the upper bound is
increased to 1002C (blue line in Figure 7).
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Figure 7 Carbon tax against uncertainty about climate sensitivity: calculated from the method of MPS using
Weitzman (2010)’s damage function. The limit of the variance of climate sensitivity (horizontal axis) is different
because we apply the 1% criterion.

The damage function in the DICE model is as Equation (8) without the polynomial term
13 X Ty4r(t, s)™. Nordhaus (2008) calibrates m;=0, 7,=0.0028388 to his own estimates for
climate damages: that is, the ratio of damages to global output for a warming of 2.5°C
equals to 1.77%. Beside Nordhaus (2008), a number of estimates of the damage costs have
been published and the parameter values of the damage function will be different according

13



to their estimates. We introduce the uncertainty about the damage costs through a PDF of

""In order to calibrate m,, we use the published

the coefficient of quadratic term m,.
estimates for climate damages induced by a warming of 2.5°C (Tol, 2009)."* We assume that
each estimate is a random draw from the normal distribution; the mean u and the standard
deviation = of the relative damage are calculated as 0.40% and 1.37% of GDP, respectively.
Some of the calibrated m, are listed in Table 2. Since the DICE does not allow net benefits
from temperature increases, we restrict 1, to take on a nonnegative value. That is, we fix

the probability of every negative damage ratio to be equal to zero."

Table 2 Alternative parameterization of damage function

Global mean losses for warming of 2.5°C Coefficient of quadratic term of the
(% gross world output) damage function 77,
Original DICE 1.77 0.002839
pn 0.40 0.000640
L-1a 1.77 0.002830
Calibration L-2F 3.15 0.005040
L-3F 4.52 0.007230
L-5c 7.27 0.011600

Note: uand = denote the mean and the standard deviation of damage ratio respectively.

Then we investigate how the joint uncertainty about the damage function and the climate
sensitivity affects the optimal carbon tax. Considering memory constraints, we reduce the
number of states of the world on climate sensitivity to 100; thus climate sensitivity increases
by 0.25°C from 0.25°C to 25°C. The number of states on damage ratio is 25, of which value
increases by 0.4% from -4.2% to 5.0%."* Thus the total number of states is 2,500.

Figure 8 shows the behavior of carbon tax under multiple uncertainties calculated from the
recalibrated Nordhaus (2008)’s damage function and Roe and Baker (2007)’s PDF. For the
same variance of climate sensitivity, the optimal carbon tax increases as the variance of
damage costs increases. This is a concave function, and thus the growth rate of carbon tax
diminishes as the variance of damage ratio increases. Multiple uncertainties play a role in a

"1t is possible to introduce the uncertainty about damage function by making a PDF of the curvature-coefficient
(default value is 2 in the DICE model) instead of 1, (e.g., Ackerman et al. (2010)). However, it does not matter
which one we choose here because we calibrate the damage costs to the published data. That is, even if we
make a PDF of the curvature-coefficient and run the model, we obtain the same results because of the
calibration procedure.

2 1n specific, we used 10 estimates concerning a warming of 2.5°C.

13 The lognormal or the gamma distribution may be applied instead of this truncated normal distribution. Those
distributions, however, are not better than the truncated normal distribution for our purpose. If we want to use
the lognormal distribution, for instance, we should be able to make the interval of each state of the world on
damage ratio as small as possible, which is computationally impossible in this simulation, because the standard
deviation of damage ratio is far bigger than the mean. Otherwise, we cannot meet the 1% criterion. Another
point is that we cannot rule out the possibility of negative damage ratio because the raw data, from which we
derived the mean and the standard deviation, do not exclude the possibility of net benefits from low
temperature-increases. Thus it is not theoretically relevant to apply probability distributions which only deal with
positive variables.

1 This range of damages covers about p+3.5 o of its distribution.
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direction of increasing carbon tax more than in the case of single uncertainty. The shape of
the function, however, does not change: it is increasing and concave.

Initial carbon tax (2005 US$AC)

Variance of damage ratio

Yatiance of climate sensitivity

Figure 8 Carbon tax under multiple uncertainties about climate sensitivity and damage function. Note that
since the expected value of damage ratio in this simulation (0.4%) is lower than the deterministic value in the
DICE model (1.77%), the carbon tax in this graph is lower than the one in Figure 2.

We introduce the uncertainty about abatement costs through a PDF for the cost of the
backstop technology. The abatement cost function in the revised model is as follows.

A(t,s) = m()6, (¢, s)u(t, )92 (9)

where s denotes the state of the world on abatement costs, A(t,s) is the ratio of
abatement-costs to gross world output, (t) is the fraction of emissions in emission control
regime, W(t,s) is the emission-control rate, 6;(t,s) = [0y(s)7eo(t)/62] X [65— 1+
technology, 1, (t) is the CO2-equivalent-emissions output ratio, 8,=2.8, 85=2, 8,=0.05 are
parameters.

Similar to the method we use for introducing uncertainty in case of damage function, we
derive a PDF of the abatement cost from published results. Tavoni and Tol (2010) conduct a
meta-analysis of abatement costs from the Energy Modeling Forum 22 (Clarke et al., 2009).
The mean and the standard deviation of the abatement costs are u=0.15% and 5=0.08% of
GDP, respectively. We assume that the abatement costs are normally distributed and
calibrate the cost of backstop technology as in Table 3. We estimate a quadratic relationship
between the abatement costs and the cost of the backstop technology.'> We assign a zero
probability to negative abatement costs. The total number of states of the world is the same

15 The exact relationship is as follows. 90 = 65.8x% + 33.5x — 0.519 (R? = 0.999), where 90 and x stand for
the cost of backstop technology and the ratio of abatement costs, respectively.
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as the case of sensitivity analysis for damage function: that is, 100 for climate sensitivity, 25
for the ratio of abatement costs, which increases by 0.025% from -0.15% to 0.45%.'

Table 3 Alternative parameterization of the abatement cost function

The ratio of abatement costs The cost of backstop technology
(% gross world output) (2005 thousand US$/tC)
DICE original 0.056 1.17
18 0.15 6.50
U+l 0.23 11.0
Calibration L+20 0.31 16.0
W+30 0.39 22.0
L+50 0.55 38.0

Note: |1 and o denote the mean and the standard error of abatement-costs, respectively. Abatement-costs and
gross world output are calculated as the net present values over a century with 5% discounting.

Figure 9 depicts the optimal carbon tax under the joint uncertainty about climate sensitivity
and the abatement costs. We only add the uncertainty about abatement costs to the results
of Section 0. Regardless of the variance of the abatement-costs ratio, the carbon-tax
function is increasing and concave. Other things being equal, the uncertainty about the
abatement costs reduces the optimal carbon tax but, unlike the case of the damage costs of
climate change, its curvature is almost linear. Since the impact of the uncertainty about
climate sensitivity dominates, the shape of the carbon tax function is increasing and

concave.

Variance of abatement-costs ratio Variance of climate sensitivity

Figure 9 Carbon tax under multiple uncertainties about climate sensitivity and abatement-costs function.

As argued by Weitzman (2009b), the results of economic analysis about climate change may
depend on the specification of the interaction between temperature and consumption in the
utility function. Assuming that damage only affects consumption goods or assuming that

1% This range of abatement-costs ratio covers u+3.75 o of its distribution.
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they also affect ‘ecological goods’ incorporated in the utility function may lead to radically
different conclusion. To test how the results are affected we introduce the alternative
constant elasticity of substitution (CES) utility function proposed by Sterner and Persson
(2008) as follows. We apply this function to the DICE model using the same parameter
values as they used, and then investigate how the carbon tax behaves as the pure rate of
time preference varies."”

E(t,s) = Ey/[1 + aT(t,s)?] (11)

where E(t,s) denotes ecological goods, a=2 is the elasticity of marginal utility of
consumption, 0=0.5 is the elasticity of substitution, y=0.1 is the share of nonmarket goods in
the utility function, Ey=yCj is the level of consumption of environmental amenities in year
2005, a=0.0028388 is a calibration parameter. See Anthoff and Tol (2011) for a critique of
the parameterization.

Figure 10 shows how the specification of utility function affects the evolution of atmospheric
temperature. As Sterner and Persson (2008) argued, the inclusion of nonmarket goods
explicitly in the utility function drastically increases the optimal abatement effort. The
impact of relative price of nonmarket goods plays a more significant role than the pure rate
of time preference p itself.
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Figure 10: Time profile of global mean air temperature increases using different utility function and the pure
rate of time preference. Nordhaus (2008) refers to the results of the original DICE model, Sterner and Persson
(2008) refers to the results of the DICE model replacing the utility function to Equation (10), (11), p denotes the
pure rate of time preference.

Introducing nonmarket goods into the utility function, however, does not disprove our main
results: the carbon-tax function of uncertainty is increasing and concave (see Figure 11).

17 Using the same parameter values as Sterner and Persson (2008), Equation (10) becomes similar to the
‘additive’ form in Weitzman (2009b).
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Lowering the pure rate of time preference makes the magnitude of changes bigger, but it
does not alter the curvature of the function.

13 7 =000

—_
[\

—_
—_

Initial carbon tax normalized to
the value of o_f=0.01

—_
(=3

Variance of climate sensitivity

Figure 11: Carbon tax against increasing uncertainty about climate sensitivity using Sterner and Persson (2008)
utility function. o_f and p denote the standard deviation of feedback factors and the pure rate of time
preference, respectively.

The assumed rate of risk aversion a is obviously important to the optimal carbon tax, and
perhaps also to the shape of the carbon tax function. We therefore run the model with
various values for a. See Figure 2. The behavior of carbon tax according to the value of « is
similar to that according to the pure rate of time preference in Figure 11: that is, basically it
is increasing and concave, and as a becomes higher, the magnitude of changes of carbon tax
becomes smaller. This is because a plays the similar role as the pure rate of time
preferences p in increasing the discount rate r in a growing economy (recall the Ramsey
formula: r = p + a X g, where g is the growth rate of consumption per capita). However, if
a is greater than 3, the optimal carbon tax decreases as uncertainty increases. For a high
rate of risk aversion and a large uncertainty about the climate sensitivity, there is a high
probability of a dismal future — and, more importantly, it is hard to avoid such a future
through greenhouse gas emission reduction. Therefore, the optimal action is to maximize
consumption in the short run — enjoy the good times while they last.
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Figure 12: Carbon tax against increasing uncertainty about climate sensitivity using alternative risk aversion.
a denotes the coefficient of constant relative risk aversion and o_f denotes the standard deviation of feedback
factors.

5. Conclusion

In this paper, we investigate the optimal choice under fat-tailed uncertainty using the
revised DICE model. Since the fat-tailed distribution cannot be fully incorporated into
numerical models, we propose an alternative way of analyzing the impacts of fat-tails: the
curvature of carbon-tax function according to uncertainty. We find that the optimal carbon
tax increases as the uncertainty about climate sensitivity increases and that its curvature is
concave. Our main result is generally robust to the alternative assumptions on the model-
specification, except that it is sensitive to an unconventionally high value of the coefficient
of constant relative risk aversion, that is, a>3."8

This paper is in line with Anthoff and Tol (2010), which use alternative decision criteria such
as minimax regret, tail risk, and Monte Carlo stationarity together with welfare
maximization, in that both of them focus on climate policy under fat-tailed risk. Anthoff and
Tol (2010) and this paper use different methods and different models, but the results
commonly confirm the mathematical analysis of Hennlock (2009): that is, although it is true
that fat-tailed uncertainty requires more stringent action for abatement in general, an ultra-
rapid abatement like arbitrarily large carbon-tax or instant phase-out of fossil fuels is not
justified even when the impacts of climate change are fat-tailed.

'8 Note that conventional values for the coefficient of constant relative risk aversion are a=2+1 (Weitzman,
2007).

19



Acknowledgements

Funding by the CEC-DG RTD FP7 project ClimateCost is gratefully acknowledged. William
Nordhaus deserves praise for making his model code freely available.

References

Ackerman F., E. A. Stanton, and R. N. Bueno, 2010. Fat tails, exponents, extreme uncertainty:
Simulating catastrophe in DICE. Ecological Economics, 69:1657-1665.

Alberth S. and C. Hope, 2007. Climate modelling with endogenous technical change:
Stochastic learning and optimal greenhouse gas abatement in the PAGE2002 model. Energy
Policy, 35:1795-1807.

Anthoff D.and R. S. J. Tol, 2010. Climate Policy under Fat-Tailed Risk: An Application of FUND.
Economic and Social Research Institute (ESRI) Working Paper 348.

Anthoff D.and R. S. J. Tol, 2011. Schelling’s Conjecture on Climate and Development: A Test.
Economic and Social Research Institute (ESRI) Working Paper 390.

Baker E., 2005. Uncertainty and learning in a strategic environment: Global climate change.
Resource and Energy Economics, 27:19-40.

Baker M. B. and G. H. Roe, 2009. The shape of things to come: why is climate change so
predictable? Journal of Climate, 22:4574-4589.

Baranzini A., M. Chesney, and J. Morisset, 2003. The impact of possible climate catastrophes
on global warming policy. Energy Policy, 31 :691-701.

Bosetti V., C. Carraro, A. Sgobbi, and M. Tavoni, 2009. Delayed action and uncertain
stabilisation targets. How much will the delay cost? Climatic Change, 96:299-312.

Dietz S., 2010. High impact, low probability? An empirical analysis of risk in the economics of
climate change. Climatic Change.

Fisher A. C. and U. Narain, 2003. Global warming, endogenous risk, and irreversibility.

Environmental and Resource Economics, 25:395-416.

Gjerde J., S. Grepperud, and S. Kverndokk, 1999. Optimal climate policy under the possibility
of a catastrophe. Resource and Energy Economics, 21:289-317.

Gollier C., B. Jullien, and N. Treich, 2000. Scientific progress and irreversibility: an economic
interpretation of the [] Precautionary Principle'. Journal of Public Economics, 75:229-253.

Hansen J., M. Sato, R. Ruedy, P. Kharecha, A. Lacis, R. Miller, L. Nazarenko, K. Lo, G. A.
Schmidt, and G. Russell, 2007. Dangerous human-made interference with climate: a GISS
modelE study. Atmospheric Chemistry and Physics, 7:2312.

Hansen J., A. Lacis, and D. Rind, others. 1984. Climate sensitivity: Analysis of feedback
mechanisms. Climate processes and climate sensitivity. American Geophysical Union, 130-
163.

20



Hennlock M., 2009. Robust control in global warming management: An analytical dynamic
integrated assessment, Institutionen fr nationalekonomi med statistik, Handelshgskolan vid
Gteborgs universitet.

Ikefuji M., R. J. A. Laeven, J. R. Magnus, and C. Muris, 2010. Expected utility and catastrophic
risk in a stochastic economy-climate model. Tilburg University.

Ingham A., J. Ma, and A. Ulph, 2007. Climate change, mitigation and adaptation with
uncertainty and learning. Energy Policy, 35:5354-5369.

Keller K., B. M. Bolker, and D. F. Bradford, 2004. Uncertain climate thresholds and optimal
economic growth. Journal of Environmental Economics and Management, 48:723-741.

Kelly D. L. and C. D. Kolstad, 1999. Bayesian learning, growth, and pollution. Journal of
Economic Dynamics and Control, 23: 491-518.

Kolstad C. D., 1996. Learning and stock effects in environmental regulation: the case of
greenhouse gas emissions. Journal of Environmental Economics and Management, 31:1-18.

Lange A. and N. Treich, 2008. Uncertainty, learning and ambiguity in economic models on
climate policy: some classical results and new directions. Climatic Change, 89:7-21.

Leach A. J., 2007. The climate change learning curve. Journal of Economic Dynamics and
Control, 31:1728-1752.

Mann A.and R. Richels, 1992. Buying Greenhouse Insurance: The Economic Costs of CO2
Emission Limits. MIT Press, Cambridge, Mass.

Marten A., 2011. Transient Temperature Response Modeling in IAMs: The Effects of Over
Simplification on the SCC. Economics Discussion Paper No. 2011-11.

Mas-Colell A.,, M. D. Whinston, and J. R. Green, 1995. Microeconomic theory, 1 edition.
Oxford university press New York.

Mastrandrea M. D. and S. H. Schneider, 2004. Probabilistic integrated assessment of"
dangerous" climate change. Science, 304:571.

Mclnerney D. and K. Keller, 2008. Economically optimal risk reduction strategies in the face
of uncertain climate thresholds. Climatic Change, 91:29-41.

Newbold S. C. and A. Daigneault, 2009. Climate response uncertainty and the benefits of
greenhouse gas emissions reductions. Environmental and Resource Economics, 44:351-377.

Nordhaus W. D., 1994. Managing the Global Commons:The Economics of Climate Change,
The MIT Press.

Nordhaus W. D. and D. Popp, 1997. What is the value of scientific knowledge? An application
to global warming using the PRICE model. The Energy Journal, 18:1-46.

Nordhaus W. D., 2008. A Question of Balance: Weighing the Options on Global Warming
Policies, Yale University Press, New Haven & London.

Nordhaus W. D., 2009. An analysis of the dismal theorem. Cowles Foundation Discussion
Papers.

21



Peck S. C. and T. J. Teisberg, 1993. Global warming uncertainties and the value of
information: an analysis using CETA* 1. Resource and Energy Economics, 15:71-97.

Peck S. C. and T. J. Teisberg, 1995. Optimal CO 2 control policy with stochastic losses from
temperature rise. Climatic Change, 31:19-34.

Phillips A. W., 1957. Stabilisation policy and the time-forms of lagged responses. The
Economic Journal, 67:265-277.

Pindyck R. S., 2010. Fat tails, thin tails, and climate change policy. National Bureau of
Economic Research.

Pizer W. A., 1999. The optimal choice of climate change policy in the presence of
uncertainty. Resource and Energy Economics, 21:255-287.

Roe G., 2009. Feedbacks, timescales, and seeing red. Annual Review of Earth and Planetary
Sciences, 37:93.

Roe G. H. and M. B. Baker, 2007. Why is climate sensitivity so unpredictable? Science,
318:629.

Rothschild M. and J. E. Stiglitz, 1970. Increasing risk: 1. A definition. Journal of Economic
Theory, 2:225-243.

Roughgarden T. and S. H. Schneider, 1999. Climate change policy: quantifying uncertainties
for damages and optimal carbon taxes. Energy Policy, 27:415-429.

Salmon M., 1982. Error correction mechanisms. The Economic Journal, 92:615-629.

Solomon S., D. Qin, M. Manning et al., 2007. IPCC, 2007: Climate change 2007: The physical
science basis. Contribution of Working Group | to the fourth assessment report of the
Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

Sterner T. and U. M. Persson, 2008. An Even Sterner Review: Introducing Relative Prices into
the Discounting Debate. Review of Environmental Economics and Policy, 2:61-76.

Tavoni M. and R. S. J. Tol, 2010. Counting only the hits? The risk of underestimating the costs
of stringent climate policy. Climatic Change, 100:769-778.

Tol R. S. J,, 1999. Safe policies in an uncertain climate: an application of FUND. Global
Environmental Change, Part A: Human and Policy Dimensions, 9:221-232.

Tol R. S. J.,, 2003. Is the uncertainty about climate change too large for expected cost-benefit
analysis., pp. 265-289.

Tol R. S. J,, 2009. The economic effects of climate change. The Journal of Economic
Perspectives, 23:29-51.

Ulph A. and D. Ulph, 1997. Global warming, irreversibility and learning. The Economic
Journal, 636-650.

Ulph A. and D. Maddison, 1997. Uncertainty, learning and international environmental policy
coordination. Environmental and Resource Economics, 9:451-466.

22



Weitzman M. L., 2007. A review of the Stern Review on the economics of climate change.
Journal of Economic Literature, 45:703-724.

Weitzman M. L., 2009a. On Modeling and Interpreting the Economics of Catastrophic
Climate Change. Review of Economics and Statistics, 91:1-19.

Weitzman M. L., 2009b. Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain
Discounting. Economics: The Open-Access, Open Assessment E-Journal, 3.

Weitzman M. L., 2010. GHG Targets as Insurance Against Catastrophic Climate Damages.
National Bureau of Economic Research Working Paper Series, No. 16136.

Yohe G., N. Andronova, and M. Schlesinger, 2004. To hedge or not against an uncertain
climate future? Science, 306:416.

23



Appendix A: the revised DICE model

In this Appendix we describe our revisions to the original DICE model. Interested readers
about the original specification of the DICE model are referred to Nordhaus (2008). We
revise the DICE model using the notion of ‘state of the world’ to introduce uncertainty about
climate change. In our model, it is assumed that each state has its own deterministic value of
climate sensitivity. Then the probability calculated from the assumed distribution of climate
sensitivity is allotted to the corresponding state of the world.

We attach s to relevant variables of the model to denote that the values of the variables are
changeable according to the possible states of the world. In this way we can map the
possible values of climate sensitivity into the relevant variables such as temperature
increases, consumption, utility, and so on. The important revised equations of the model

are:
s T

ggggg; 2 POV, LO) RO Ay

U(c(t5),L(®) = L(B)[c(t, )/ (1 - )] (A-2)

Q(t, s) = 2(t,s)[1 — At, $)IA®K ()Y L(E)TY (A-3)

0(t,s) = 1/[1 + m Tar(t, s) + mTar(t, 5)?] (A.4)

At,s) = n(£)8; (O)u(t, s)02 (A.5)

where S and T denote the total number of states s and the time periods t, respectively, p(s)
is the probability of each state of the world, c(t, s) is the flow of consumption per capita at
time t and state s, L(t) is the level of population at time t, U(c(t, s),L(t)) is the utility
function, R(t) = (1+ p)~t is the discount factor, p=0.015 is the pure rate of time
preference, Q(t, s) is the global output net of abatement-costs and damages, 2(t, s) is the
damage function, A(t) is the total factor productivity, K(t) is the capital stock, A(t, s) is the
abatement-cost function, (t) is the fraction of emissions in emission control regime, 6, (t) is
the adjusted cost of backstop technology, l(t, s) is the emission-control rate, T4 (t) is the
global mean air temperature increases from 1900, a=2 is the elasticity of marginal utility of
consumption, y=0.3 is the elasticity of output with respect to capita, 7,=0, 7,=0.0028388
are the parameters of damage function, 6,=2.8 is the parameter of abatement-cost
function.

We use the same parameter values as the original DICE model unless otherwise indicated. In
order to deal with extreme climate change we remove the upper bound of atmosphere and
ocean temperature increases. We also remove the fixed value of an initial emission-control

rate because it artificially affects the initial carbon tax.

For multiple-uncertainty runs in the section of sensitivity analysis we attach other subscripts
d and a to the relevant variables in order to denote the possible states on damage function
and abatement-cost function respectively. Other features of multiple-uncertainty runs,
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except the method of producing the probability distribution, which is described in the core
text, are the same as the one mentioned above.
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Appendix B: calibration of the atmospheric temperature equation

The DICE model represents the climate system by a multi-layered system consisting of the
atmosphere, the upper oceans, and the lower oceans. It adopts a box-diffusion model
(Schneider and Thompson, 1981) as the following equations:

Tar(t) = Tar(t — 1) + & {F () = &ETar(t — 1) — &[Tyr(t — 1) = To(t — D]} (B.1)
To(t) =Tro(t — 1) + E{Tyr(t — 1) — Tpo(t — 1)} (B.2)

where T47(t) is the global mean surface air temperature increases from 1900, T, (t) is the
lower oceans temperature increases from 1900, F(t) is the total radiative forcing relatively
from 1900, &,, &,, &5, &, are parameters.

This representation is a simple way of incorporating climate system into IAMs but has some
problems. Apart from the critics that it fails to capture the real mechanism of the climate
system (Marten, 2011), one of the practical problems encountered during simulations is that
the model does not produce a feasible solution when the value of climate sensitivity is lower
than around 0.5°C. We find that this problem is induced by the fact the original specification
creates a fast cyclical adjustment when we change only the parameter on climate sensitivity.
To see this, notice that Equation B.1 can be rearranged with simple algebra into Equation
B.3, which is an error-correction model (Philips, 1957; Salmon, 1982) with an adjustment
speed a; and target a, F(t) — ag[Typ(t — 1) — Tyo(t — 1)]:

Tar(®) = Tar(t — 1) — ay{Tar (€ = 1) — aaF () + a3lTur (6 — 1) = Tpo(t — D]} (B.3)
where a,=¢,¢,, a,=1/¢&,, a;=&3/&,.

Since a, is the climate sensitivity (CS) divided by a constant (the estimated forcing of
equilibrium CO, doubling), decreasing the climate sensitivity artificially increases the
adjustment speed a;=¢; /a,. With DICE default (CS=3°C), the adjustment speed «a; is 0.22.
For CS lower than 0.8, the adjustment speed becomes higher than one. This leads to a
cyclical adjustment to the equilibrium temperature which does not make much sense
scientifically speaking. For CS = 0.5°C, a;=1.7 which, in addition to implying important and
irrelevant jumps up and down in the temperature every period, leads to an infeasible
solution.

To avoid this problem, we recalibrate the parameter values in Equation B.1 so as to ensure a
coherent adjustment process. We calculate atmospheric temperature T, (t) according to
Equation B.3 using various values of adjustment-speed a; and climate sensitivity CS. Then
we fit Ty (t) against the historical observation data." Through the experiment we find that
the adjustment-speed is linearly related to the inverse of climate sensitivity and the slope of

' The historical data used for this calibration are as follows: atmospheric temperature (Hadley center,
CRUTEM3), ocean temperature (NOAA, global anomalies and index data), radiative forcing (Hansen et al., 2007).
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the function changes around CS=1.5°C and CS=3°C.”° Thus we obtain three different
functional forms according to the range of CS as follows.

a; = 0.559/(CS — 1.148) (if €S = 3°C)
a,; = 0.993/(CS + 0.430) + 0.012 (if 1.5°C < CS < 3°C) (B.4)
a, = —0.943/(CS — 3.218) — 0.022 (otherwise)

2 The detailed data for this calibration can be obtained upon request. Air temperature may decrease over time if
CS <1.2°C (Baker and Roe, 2009), but in this experiment the sign of the slope changes at CS=1.5°C. This may be
caused by the sign of radiative forcing in the slope equation or observational-errors of the data used (Slope =

By [Tur(t) — Tyr (t — 1)]/F(t — 1), where B;>0 is a constant).
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